SGeT: open standard connects embedded devices to the cloud

Introducing the Universal IoT Connector (UIC), the Standardization Group for Embedded Technologies (SGeT) has released the first purely software-related standard ever since its inception six years ago. This was preceded by the insight of manufacturers, system vendors and users that a universal IoT connector that standardizes the connection between hardware and cloud is needed for a comprehensive rollout of Internet of Things applications. Previous standardizations often focussed on communication and protection only and thus on the higher software- or communication layers. Or to put it short: where it comes to the application and thus the useful part of IoT solutions.

However, data first has to reach the level, where it can be collected, transported and finally processed or stored. Although it is possible to access and control hardware resources such as sensors, actuators or embedded systems through the eAPI for embedded hardware via a defined interface, all hardware I/O communication has to be done manually for each and every edge- and cloud connection until now. When replacing hardware, updating, or even changing manufacturers, many, if not all, customizations need to be made from scratch, possibly for all affected layers, right through to the final application. This is precisely where UIC comes in: The integration of counterparts is made easier by the three levels of abstraction, allowing partitioning of the many aspects of IoT computing. The UIC interface standard makes a distinction between the device configuration device configuration (hardware identification, device mapping, value-to-information matching), the sensor and actuator communication (hardware driver) and the device communication (data transfer & processing). With more than 450 cloud service offerings and an even greater number of possible hardware configurations, this provides a very open, efficient, and hands-on approach to current and future Internet of Things solutions.

Specifically, the Universal IoT Connector architecture consists of three interface descriptions: First, the Embedded Driver Module (EDM) interface, which controls the connected hardware peripherals via drivers and provides for sensors, actuators or other local information. The second functional block is the Project Configuration Interface, which provides a configuration mechanism for embedded systems. It regulates which periphery is to be controlled, how raw data is added to information sets and at what point data is going to be transmitted to the server. Last but not least there is the Communication Agent Interface, responsible for transferring information to the communication unit, for example a (cloud) server, which includes sending and receiving of data sets or events. What makes UIC stand out in the field is its open approach to server connectivity (Cloud/Fog/M2M) and its associated infrastructure, as well as to its underlying hardware and vendors – at least as long as EDMs are supported – and last but not least to the level of communication. Depending on the configuration, this allows for connecting to Amazon Web Service (AWS) using a Qseven module and MQTT as well as connecting to Microsoft Azure Cloud via XRCE using a COM Express module. Due to the abstraction, the lean middleware paves the way for a particularly flexible approach. The cross-platform and open approach unifies the access to multiple hardware components from different vendors – such as ADLINK, congatec, Kontron, Portwell or Seco – utilizing a growing number of supported cloud platforms, such as AWS, M2MGO's People System Things (PST), SAP Hana or Microsoft Azure Cloud using a wide range of protocols (MQTT, XRCE, OPC / UA, etc.). In addition, UIC runs on Windows Embedded and Embedded Linux.

SGeT's UIC standard offers a hands-on, open approach to IoT solutions and Industry 4.0 applications in one of the strongest growth markets.


Arduino CEO Fabio Violante on their migration upwards in engineering

In this video Arduino CEO Fabio Violante talks about their ambitious migration upwards in engineering solutions and products with Alix Paultre in Tegernsee, Germany. Arduino, long known for their deve...


Silicon Lab CEO Tyson Tuttle talks about their wireless IoT portfolio

In this video Silicon Lab's Tyson Tuttle talks to Alix Paultre about their new wireless IoT portfolio. Wireless Xpress provides a configuration-based development environment, with certified Blueto...


Keysight's Joachim Peerlings talks about the new UXR series Oscilloscope

In this video Keysight's Joachim Peerlings talks about the new UXR series Oscilloscope with Alix Paultre at their launch event in Munich. The Infiniium UXR-Series of oscilloscopes has models rangi...


BrainChip explains their new Neuromorphic System-on-Chip

In this video, Bob Beachler of BrainChip talks to Alix Paultre about their latest single-chip neural network technology.  Spiking neural networks (SNNs) are inherently lower power than traditiona...


Vincotech – EMPOWERING YOUR IDEAS

In this video the Vincotech team walks us through the most important topics displayed on their booth at PCIM Europe 2018. It also explains why Vincotech is First in SiC Modules. Being very flexible in...


Microchip talks about their latest secure microcontroller

Microchip's new SAM L10 and SAM L11 families of 32-bit microcontrollers (MCUs) address the growing need for security in Internet of Things (IoT) endpoints by protecting against the increasing the ...


E-Mail Newsletters

nlsc240

Our 3 E-Mail Newsletters: EETimes/EDN Europe, Embedded News and Power Electronics News inform about the latest news in technology and products, as well as technical know-how like white papers, webinars, articles, etc.


B & S / ECE Magazine

- latest issue is online now -

October 2018

Content Highlights

Cover Story

Slimming program for medical operating devices

Download now


wholesale jerseys